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Abstract

In this paper, a kind of shunting inhibitory cellular neural network with
a neutral delay was considered. By using the Banach fixed point theorem,
we established a result about the existence and uniqueness of the almost

periodic solution for the shunting inhibitory cellular neural network.
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1. Introduction

Shunting inhibitory cellular neural network (SICNN) is a kind of very important
model and has been investigated by many authors (see [1, 2, 3, 4] and the reference
therein) due to its wide applications in practical fields such as robotics, adaptive pattern

recognition and image processing. In [1], Ding studied the following SICNN

Th; = —aiTi; — Z Cif flawa(t — 7(0)]wi; (8) + Li (1),

Cri€Nr(4,5)

Most of the existing SICNN models are concerns with the delays in the state.
However, it is not enough for it can not describe the phenomenon precisely. It is
natural and useful to consider the model with a neutral delay, it means that the system
describing the model depends on not only the past information of the state but also
the information of the derivative of the state, i.e., the decay rate of the cells. This kind
of model is described by a differential equation with a neutral delay. The neutral type
differential equations have many applications, for more details we refer to [6]. Some
authors have considered the Hopfield neural networks with neutral delays, see [7, §].
To the best of our knowledge, there is few consideration about the shunting inhibitory
cellular neural network with a neutral delay. In this paper, we consider the following
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shunting inhibitory cellular neural network with a neutral delay:

vy =—ay(zy — Y CHO) flau(t — 7(6))wi;(t)

Cri€Nr(4,5)

— Y DE®)glak(t — o(0)ay(t) + L (t). (1.1)
CHENs(Z',j)
In this model, C;; represents the cell at the (¢,j) position of the lattice, the
r—neighborhood N, (i, j) of Cj; is defined as follows

Nr(z’,j):{Ckl: max{|k—i|,[l—j|}<r 1§k§m,1§l§n},

z;j(t) describes the state of the cell C;;, the coefficient a;;(t) > 0 is the passive decay
rate of the cell activity, C’fjl(t), ijl (t) are connection weights or coupling strength of
postsynaptic activity of the cell Cj; transmitted to the cell Cj;, and f, g are continuous
activity functions, representing the output or firing rate of the cell Cy,; , and 7(t), o(t)
correspond to the transmission delays.

In the following, we give some basic knowledge about the almost periodic functions
and almost periodic solutions of differential equations, please refer to [9, 10] for more
details.

Definition 1.1 (See [10]) Let u : R — R™ be continuous in t. w is said to be almost
periodic on R if, for any € > 0, the set T'(u,e) = {9 :| u(t + ) —u(t) |[< ¢,V t € R} is
relatively dense, i.e., for Ve > 0, it is possible to find a real number [ = I(¢) > 0, for
any interval with length I(¢), there exists a number § = J(¢) in this interval such that
| u(t+9d) —u(t) |<e, for all t € R.

Definition 1.2 ([9, 10]) If u : R — R™ is continuously differentiable in t, u(¢) and
u'(t) are almost periodic on R, then wu(t) is said to be a continuously differentiable
almost periodic function.

Let AP(R,R™") and AP'(R, R™*™) be the set of continuous almost periodic func-
tions, and continuously differentiable almost periodic functions from R to R™*™  re-
spectively. For each ¢ € APY(R, R™ "), define

|¢llo = sup max{| ¢;; |},
teR WJ

lell = max{{[¢llo, [l llo}-

It is easy to check that (AP(R,R™ "), |- llo) and (APY(R,R™ "), || -||) are all Banach
spaces.

Definition 1.3 ([9, 10]) Let € R™ and Q(t) be an n X n continuous matrix
defined on R. The linear system

/(1) = Q(t)x(t) (1.2)
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is said to admit an exponential dichotomy on R if there exist positive constants k, o,

projection P and the fundamental solution matrix X (¢) of (1.2) satisfying
I X(OPX(s) < ke @@, t>s,

| X = P)XN(s) < ke 00, ¢ <.

Lemma 1.1 ([9, 10]) If the linear system (1.2) admits an exponential dichotomy,
then almost periodic system

/() = Q(t)x(t) + g(t) (1.3)
has a unique almost periodic solution z(t), and
t +o00
z(t) = / X(t)PX Y(s)ds — t X(t)(I — P)X(s)ds. (1.4)

Lemma 1.2 ([9, 10]) Let ¢(¢) be an almost periodic function on R and

1 t+T
Mle] = Tl_1£1 ?/ ci(s)ds >0, i=1,2,---n.
o0 t

Then the linear system
2(t) = diag(~cr(t), —ea(t), -+ n(8)) (1)

admits an exponential dichotomy on R.
2. Main results

Firstly, We give some assumptions.

H.) aii(t), CF(t), DFYt), I:(t), 7(t), o(t) are all almost periodic functions,
J 1] 1] J
i:1727"'7n7j:172a"'am;

(Hy) the activity functions f and g are Lipschtiz functions, i.e., there exist L > 0,
[ > 0 such that

\f(z) = f(y)| < Lz —y|, Va,yeR,
l9(z) —g(y)| <z —yl, Vz,yeR;

(Hs) sup|CH(t)| = c_@l < oo, sup|DH(t)| = D_;;.l < +oo, sup|a;(t)| = af; <
teR teR teR
+00, (IZ']'<U) > Qjjs > 0.
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Let

t

oo / e Sty (s)ds ), ol = Ry

—00

op=max{ S CHLR+IfO))+ Y DE(2Rr+9(0)])}:

27-] .. ..
Cri€Nr(4,5) Cri€Ns(i,5)

0 =max{ Y CH(4LR+1fO))+ Y DF(4Rr+]g(0)])}.

Y CueN (i) Ol eNs (i)
where R is a constant with R > Rj.
Theorem 2.1 If (H;), (Hz), (H3) and the following conditions are satisfied

(1) Ry < R < +ox;

ot
(2) 91-Ir212;><{1 1++”}§%;

Q5% ’ Qs 5%

at
(3) 8:6’2-max{ 1 1+ﬁ}<1,

i, Qijx’
then Eq.(1.1) has a unique almost periodic solution.

Proof. For any given ¢ = {p;;} € AP'(R,R™*"), we consider the almost periodic
solution of the following differential equation

vy =—ay(zy — > CEOflenlt— (1))
Cri€Nr(4,5)
— Y DE()g(eh(t — a(t)pi(t) + L(t). (2.1)
Cri€Ns(4,5)

Since @q;(t), ai;(t), CH(t), Dii(t), 7(t), o(t) and I;;(t) are all almost periodic func-
tions, and Ma,;] > 0, according to Lemma 1 and lemma 2, we know that Eq.(2.1) has
a unique almost periodic solution x¥ = {xz , which can be expressed as follows

t

o= [ femn] S ) fouls — 9)eu(s)

o CriENr(4,5)

=Y DEE)gls — o()ils) + Is(s)]ds.

Cri€Ns(4,5)

We define a nonlinear operator on AP(R, R™*") as follows

T(p)(t) = 2¥(t), VYo e AP'(R,R™™).
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It is obvious that the fixed point of T" is a solution of Eq.(1.1). In the following we will
show that T is a contract mapping, thus the Banach fixed point theorem assert that T
has a fixed point.

Let E be defined as follows

E={p € AP'(R,R™")| |lp — ol < R}.

Firstly, we show that T(E) C E. For each ¢ € E, we have [[¢ — o] < R
lell < lle = @oll + llvoll < R+ R < 2R. Thus

1T = @ollo
t
— supmax { | / e St [ ST CH(s) Fpuls — 7(5))pu(s)
teR " — 0 CkleNr(i,j)
= Y DEE)g(ls — o) (s)|ds|}
CHENs(i,j)
t
< swpmax { [ e e S Gl fpuls - (9)ou(s)
R €N, (i.9)
— Y DHE)9(els — o(s)ei(s)|ds}
CHGNs(i,j)
t
< swpmax{ [ e o] ST OH (s - (sl nls)
ek B CriEN (i)
Y IDHE) s = o())llgis)] | ds)
Cri€Ns(4,5)
t
< supmax { / e Jrestote [N CE(If(puls — () — FO)] + £(0)])
teR b Cri€Nr(1,5)
+ > DE(lglhls — o) — g(0)] + [g(0)])) | ds 2R
Cri€Ns(4,5)
t
< swpmax{ [ e o] S EH(Epu(s - 7(s)] + 7O
teR I —00 CHGNr(i ])
+ Y DEUg(s — o(s)] + g(0))]ds f2R
Cri€Ns(1,9)
t
< supmax{/e‘fst““(“)d“[ Z C’“ (2LR+[£(0)])
teR %I — 0 CHGNT(Z ])
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+ Y DH@R+ \g(O)\)]ds}zR
Cri€Ns(i,5)
t

supmax{/e_““*(t_s)ds}QRQl

teR  ©J

IN

—00

2R6, rrZ;%X { aAl‘ }
R - (2.2)

IN

IN

and

(T = 0)'llo

t ..
= supmax{‘/ —ay(t)e Js e
teR  WJ

[_ Z ijl(s)f(wkl(S—T(S)))

CriENr(i,9)

= Y DHE(els —a(s)]uls)ds

Cri€Ns(4,5)

+[_ Z CE) f(or(t — 7(1)))

CriENr(1,9)

- ¥ ij(t)g(%(t—J(t)))}%j(t))}

Cri€Ns(i,5)

= Sup max ’/ ai;(t o= J1 aij(u)du
teR  ®J

Z i (s).f (pwa(s — 7(s)))

Cri€Nr(4,5)

t) D Eles = o ()] euls)ds

Cri€Ns(4,5)

Z CH) f(om(t — 7(1)))

Cri€Nr(4,5)

+ ¥ ij(t)g(%(t—O(t)))]%‘(t)’}

Cri€Ns(4,5)

t
S sup max { / ‘aw (t)‘ei fst a;j(u)du

teR  WJ —oc0

> IO f (puls = 7(s)

Cri€Ny(4,5)

+ Y IDEO)] g(ehls = o)) leis(s)lds

Cri€Ns(1,9)
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[ IeEO ot =)

Cri€Nr(4,5)

bY IDEOl sl - o)l

Cri€Ns(i,5)

t
sup max { / a[;}—je—aij*(t—s)ds .
teR  ©J —00

[ > F (2Lr+100)))

Cri€Nr(4,5)

+ Z Dkl <2ZR + |g(0)|>]

Cri€Ns(

| X c;gl (2LR+|f(0)|>
Cri€Nr(3,5)

+ Y D—fj’<2lR + |g(0)|)} } 2R

Cri€ENs(1,5)

IA

< 2R91max{1+—]}
1,J Qs
< R (2.3)

From (2.2) and (2.3), we have ||T'¢ — ¢q|| < R, thus T(F) C E.

Let ¢, v € E, denote by

hs) = Y O (euls = m5)isls) = F (wnls = () ) (s)].

Cri€N:(4,5)

his) = >0 DHs)|g(wuls — os))eisls) — g (vials — o(5) ) uis(s)|.

Cri€Ns(4,5)

We have
|11(s)]
_ ’ S s )[f(som(s _ T(S))> 0ii(s) — f(@/)kz(s - O(S))>¢z‘j(8)]
Cr1ENr(1,5)
< Z CZZ[ (SOM(S - 7'(3))> @ij(S) - f<<Pkl(3 - T(S)))¢ij(5)
Cri €N (i)

[ (uals = 750 )s(s) = £ (s = 0(5)) ) (s)
(puts =7(s0)]| - ists) = vis(s)

|
-y

Cri€Nr(1,9)
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—|—‘f(90kl<8 — 7-(5))) — f<wkl(s — a(s)))‘ )
< 3 affJr(euts = rion)|- euts) = vilo)

Cri€Nr(i,5)
L [puls = 7()) = (s - o(s))| -
< > AH[(|#(wuts = r0) - 1O + |10)

Cri€Nr(1,5)

Vij(s)

|

Yij(s)

) :

]

0ij(s) — Pij(s)
+L- ’@kl(s 7(5)) — Yu(s — o ’
< Y CH[(2LR+1FO)]) - [eusls) = wi(s)

Cri€Nr(4,5)

YOLR - )%(s — 7(s)) — (s — o(s))

< Y CHALR+1FO) -l - vl

Cri€Nr(4,5)

]

Similarly,

15(s)]
= | X DEE[o(ells — ) euls) g (hals — o))y (s)]|

Cri€Ns(4,5)

< Y DE(uRr+190)) - Ie -l

Cri€Ns(4,5)

[T — Tl

t
t
= supmax{‘ /efs‘”j(“)d”
teR  ©J

E > ckl(>([f<gokl<s—f<s>>>so@-j<s>—f<wkl<s—o—<s>>>w@-j<s>)

Cri€Nr(
- Df;< >(g<so;,<s—o—<s>>>soij<s>—g<w;;l<s—a<s>>>wij<s>)]ds]}
Cri €N (4,5)
< stlel[gmzjix{/e‘f@u(u)du(‘h(s)\+\[2(3)\>d5}
< stupmax{/e J @15 (w)du ds[ 3 @(4LR+\f(0)\)
R CLEN, (i.j)
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_ D—fjl(ZMR + |g(0)|)} } e =9
Cr1€Ns(4,5)
t

< supmaX{ /e_a“*(t_s)dS} 02 |l =l

teR I

< 0, (2.4)
And
(T = T4) o
t
— sup max{ / —a;;(t)e” Js aij(w)du
teR  ©J -0

{[_ Z CH(s) [ (ri(s —7(s)))

Cri€Nr(1,5)

- Y DHEg(ehs — als)]euils)

CkleNS (Zvj)

+ [ Z CH(s) f(Wuls —7(s)))

CkleNT‘(Zvj)

bOY DHSawh(s — o) (o) s

Cri€Ns(i,5)
H- X st - o)
Cri€N-(1,5)
- > DHWgleilt — o) o)
Cri€Ns(i,5)

+[ Y CHOf(Wult —7(t)

CkleNT‘(Zvj)

S Dgf;@)g(wgl(t—a(t)))}%(t)}’}

CklENS(Zh])

IN

?flellg max { /_too \aij(t)\e*fstaij(u)du(|Il(3)\ + |[2(S)|)d$
+(Inml+150)1) }

supmas { [ e £ 11} 05 o — )

teR  ¥J

IN

IN

supmax{/ a; e_‘“ (t= 8)d8+1} 0+ lo = |

teR  ©J
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Jr

ay;
< 0y -max {1 +
1,5 Qjjx

} le — ¢ (2.5)

From (2.4) and (2.5), we have ||Ty — T| < 03 - max {%, 14— } e =] =
i,j e
0 - |l —||. According to the condition of this theorem we know 6 < 1, therefore T’

a’LJ*
has a unique fixed point.

Example We consider the following SICCN with neutral a delay:

= —ay(Ozy — D CHE) flow(t —7(8))]wy (D)
Cri€Nr(if)
+ Y DEgla(t — o(t))]ay(t) + (), (2.6)
Cri€Ns(4,5)

where i = 1,2,3, j = 1,2,3, 7(t) = cos®t, o(t) = sin2t, f(z) = 2sinz, g(z) = 3|z],

a1(t) aa(t) ags(t) 54 |sint| 5+ |sin2¢] 9+ |sint]
as1(t) agxn(t) ax(t) | =| 64 |cost| 6+ |sint| 7+ |cost|
asi(t) ase(t) ass(t) 8+ |cost| 8+ |sint| 5+ |sin2t
c11(t) c2(t) cs(t) 0.004|sin3t| 0.002|sin3t| 0.001]sin 3¢
Co1 (t) C99 (t) 023<t> = 0002| sin 3t‘ 0001‘ sin 3t‘ 0001‘ sin 3t‘
C31 (t) C32 (t) 033<t> 0001| sin 3t‘ 0002‘ sin 3t‘ 0001‘ sin 3t‘
dii(t) dia(t) dis(t) 0.001| cos2t| 0.001| cos2t| 0.002| cos 2t
do1(t) da(t) dos(t) | =| 0.001] cos2t| 0.002|cos2t| 0.003]cos 2t|
dsi(t) dso(t) dss(t) 0.002| cos2t| 0.002| cos2t| 0.001] cos 2|
L (t) ILia(t) I5(t) sint sint cost

I (t) Isa(t) Ias(t) | =| sint cost cost

I3i(t) Isa(t) Iss(t) cost cost cost

In the following, we will check that all assumptions of the theorem are satisfied. By

computing,we have

+ 4+ o+
iy Qg Qg3 6 6 10 A11x  A12% Q134 5 5 9
+ o+ o+ _ -

Uy Ay Go3 | =| 7 7 8 , A21x Q22+ Qo3« | =| 6 6 7
+ o+ 4

Gszy Qzp dsg 9 9 6 a31%  A325% (433« 8 8 5
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C11 Ci2 Ci3 0.004 0.002 0.001

@1 m @s | =] 0.002 0.001 0.001 [,
G31 C3 Ca3 0.001 0.002 0.001
dy1 dig dis 0.001 0.001 0.002
dy; dy dos | =] 0.001 0.002 0.003
d31 dsy dsg 0.002 0.002 0.001

Note that f and g are Lipschtz functions with f(0) = ¢(0) = 0, the Lipschtz
constants of f and g, L, [, are less than 1, we take L =1 =1.

>t Y du=0014, SN+ S dy=0021,

cr€N1(1,1) cr€N1(1,1) cr€N1(1,2) cri€N1(1,2)

S o@m+ Y dw=0013, Y @+ X du=0.021,
c€N1(1,3) e €N1(1,3) cki€N1(2,1) crl€N1(2,1)

>oom+ >, du=0.030, > @t Y du=0.019,
cri€N1(2,2) e €N1(2,2) cki€N1(2,3) e €N1(2,3)

Yoo+ Y, du=0013, X G+ X dy=0019,
CklEN1(371) ckleNl(g,l) ckl€N1(372) ¢k €Nt (372)

> T+ Y. du=0013
cri€N1(3,3) ckl€N1(3,3)

From computing we know |¢o|| < &, we choose R = 3. Obviously max {L, 1+
Z7j

Q5%
a a
Sih = W00 = 018, 6, = 036, 6 max{;l 1+ 25} = 0.396 < 3, 0= 6,
37 % i,j Ve 05 %

af
max{ L1+ i} = 0.792 < 1. So all the conditions of theorem 2.1 are satisfied,

L) ..
a. a.
] 1% OVES

hence by the theorem 2.1, Eq.(1.1) has a unique almost periodic solution.
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